jueves, 24 de mayo de 2012

La curva de Koch 



La curva de Koch fue ideada por Helge von Koch en 1904 como ejemplo de curva de longitud infinita contenida en un recinto acotado y sin tangente en cualquier punto. Su construcción se hace mediante un proceso similar al del conjunto de Cantor.

Construcción del Copo de Koch
Para su construcción:

Se parte de un segmento de longitud 1. El primer paso consiste en dividirlo en tres intervalos iguales, construir un triángulo equilátero sobre el intervalo central y suprimir la base de dicho triángulo, como indica la figura. El segundo paso de la construcción consiste en hacer lo mismo que hemos hecho en el primer paso sobre cada uno de los cuatro intervalos que han resultado. Y se repite el proceso infinitas veces. La curva de Koch es la curva a la que se van aproximando las sucesivas poligonales que resultan en cada

En esta se aplica el teorema de thales para construir una construir una macro, que llamaremos koch asociada al algoritmo: se dibuja un segmento al que se le aplica la macro thales que lo divide en tres partes iguales, y sobre el segmento central se construye un triángulo equilátero. El objeto inicial de la macro es el segmento original y el objeto final son los dos segmentos de los extremos y los dos lados superiores del triángulo.

No hay comentarios:

Publicar un comentario